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INTRODUCTION

The nonrelativistic description of a nucleus of A interacting

particles is given by the solution of the Schrodinger equation

A A
2
[‘ Z—M' Z vy * E Vij ] |9) = Ejv)
i=1 i<j

where Vij representg the interaction between the i-th and j-th nucleons
and M is the nucleon mass. The problem of obtaining this description

is seen to be twofold: (1) finding the interaction operator explicitly
and (2) wusing the interaction operator to deduce the physical character
of the various nuclear systems in order to compare them with experiment.
Regrettably, the nucleon-nucleon interaction is sufficiently complicated
that the explicit form of the interaction operator is as yet undeter-
mined. Furthermore, even if Vi3

J

for a system of A interacting particles could not be solved generally.

were known, the Schrodinger equation

Thus, to obtain an adequate explanation of the properties of various
nuclei, theorists have been forced to introduce many simplifying as-
sumptions, some of which can be justified only by their end result.

One approximation which has been remarkably successful in predicting
many of the properties of nuclear ground states, but for which the theo-
retical justification was slow in being developed is the shell.model of
Mayer1 and of Haxel, Jensen, and Suess.2 The basic postulate of this
theory is that the motion of an individual nucleon can be regarded as

that of a particle in a spherically symmetric potential produced by the
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rest of the nucleons. 1In its original form, this model is inadequate in
dealing with excited states, and modification has been found necessary
in two respects. First, many of the properties of light nuclei in
particular have been found to arise from the reorientation of several
particles relative to each other, leading to the individual-particle
picture of nuclear structure in which a residual interaction between
nucleons is assumed to induce a correlation in the motion of the parti-
cles in a central potential. Second, the central field has been shown
in general to be neither static nor spherically symmetric, indicating a
collective model of nuclear structure in which the motions of individual
particles are regarded as being superposed upon the collective oscil-
lations of the nucleus as a whole. This model, as first developed by
Bohr and Mottelson,3 has its greatest success in the region of heavy
nuclei well away from closed shells. 1In light nuclei and in regions
near to closed shells, the individual-particle aspects of nuclear struc-
ture are dominant, and for these nuclei the collective effects may be
treated in terms of configuration mixing.

The first employment of the individual-particle model for a detailed
analysis of the odd-parity states of O16 and N16 nuclei was by Elliott
and Flowers.4 They assumed that these states could be described primarily
by a hole in a lp state and a particle in a 1d or 2s state moving in a
harmonic-oscillator potential. A particle-hole interaction consisting
of a single-particle spin-orbit potential and a two-particle central
interaction potential with a Rosenfeld exchange mixture was treated as
a perturbation. Subsequent investigations by Duck5 and by Gillet6 were

based on the same assumptions, and only the parameters in the central




3
interaction potential and the character of the exchange mixture were

16 16

changed. This method produced a reasonable picture of the 0" and N

nuclei, but some anomalous features did develop, primarily in the beta

16 to the 17 level of O16 and in the O16 muon

decay of the 2~ level of N
capture. Our study is directed toward eliminating these irregularities
by employing a Ser¥®er exchange mixture for the central interaction
potential and by replacing the single-particle spin-orbit potential in
the residual interaction with a two-particle spin-orbit interaction
potential. Thus, we are seeking not only information about these nuclei,
but also knowledge of the general nucleon-nucleon interaction potential.

Occuring in our calculations are sixteen independent nuclear and
nucleon parameters, the indiscriminate variation of which would lead to
the fitting of almost any data desired. Since this would be of dubious
significance, we assign to thirteen of the parameters values indicated by
scattering and energy level data; the remaining three are varied about
their experimental values to compensate partially for the inaccuracies
resulting from theoretical approximations and experimental error. 1In
every instance, however, we conform to experimentally-indicated results
as closely as possible.

The main text of this paper is divided into three sections. 1In
Chapter I the possible nucleon-nucleon interaction potentials are consid-
ered, and the form is selected which is thought necessary to obtain a
reasonably accurate picture of the 016 and N16 nuclei without unneces-
sarily complicating the calculations. Then the assumptions made to
approximate the solution of the Schrodinger equation are discussed, and
the potential well introduced by these assumptions is chosen. A mathe-

matical treatment of ¢
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is presented in Chapter II. The final chapter contains theoretical

16 .4 N16

predictions of the energy-level splittings of O and of the
beta-decay and muon-capture rates for the two nuclei. After a compari-
son of these results with experimental data, the nuclear state vectors
giving the best experimental fit are chosen. The appendices contain
three derivations too cumbersome to be included in the main text, but

necessary for the completeness of the work, and a summary of formulas

from Racah algebra which are used throughout our calculationms.



CHAPTER I

THE MUTUAL INTERACTION BETWEEN NUCLEONS

Form of the Nucleon-Nucleon Interaction Potential

In describing a nucleus of interacting particles by the Schrodinger

equation

:

N |3
= W

A A
2 \ * 1
Z v o+ L v J 1) = E|¢ (1.1)
i=1 i<j
we are making two assumptions about the mutual interaction between
nucleons. First, and most basic, we are assuming that the interaction
of nucleons through the meson field can be represented by an interaction
potential between nucleons. Such an approximation is considered valid
only if (v/c)? << 1 where v is the mean nucleon velocity. Taking the
average kinetic energy of a nucleon in a nucleus to be 20 Mev,7 we find
(v/c)® =~ 1/20 so that the nonrelativistic approach is justified. The
second assumption made in writing Eq. (I.1) is that the mutual interaction
between nucleons is a two-body interaction. Although many-body forces
may someday be required by meson theory, their necessity has not as yet |
been demonstrated.8
The interaction potential between nucleons has been found to satisfy

many requirements which severely restrict its possible forms. 1In addiqion

to being Hermitian, the interaction potential must be invariant under the

following transformations:9 (1) Galilean transformations, (2) rotations
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in total angular momentum space, (3) spatial reflections, (4) time
reversal, and (5) rotations in isotopic-spin space. Furthermore, Lorentz
invariance arguments indicate that terms in the interaction involving
powers of the momenta higher than the first must be very small.7
We also assume that the mutual interaction potential can be factored
into separate orbital, intrinsic-spin, and isotopic-spin parts in the

form
vi; = (L o) o sh (gps 03)] Dy, Ty) (1.2)

The isotopic-spin operator D(Ti,Tj) must be scalar to satisfy the fifth
invariance requirement and thus is restricted to being either 1 or

(14 « T The spatial part of the interaction potential is written as

§-

~ ~

a scalar product of two tensors of degree A which operate in different
spaces. Since the spin operators are first-degree tensors, we can only
form two-particle operators for which A £ 2. Thus the possible inter-
action potentials may be separated into three groups according to the
degree of the spin operator tensor.

A_= 0. The part of the mutual interaction which is scalar in both
spin and orbital spaces is called the scalar interaction potential ng'
From invariance requirements we find that so(‘,i,cj) can take only the
forms 1 or (05, oj) and LP(ri,rj) can only be a function of the distance

between particles. The most general form of the scalar interaction

potential is then

vij = [ag +ag (o3 05) +ap (13 - 73) +a3 (o5 95)(T3 *TP]
(I.3)

—~

X v°(|ri - r.%)
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The coefficients in this equation may be evaluated from scattering

data more readily if the potential is rewritten in terms of permutation

operators. From the relations10

1
E[l'l'ci ’ GJ]

~ "~

P_(15)

and

1 ,
PT(1J) ) [1 +T, Tj]

—~

where Pc(ij) and PT(ij) are the permutation, or exchange, operators in
intrinsic-spin and isctcpic-spin spaces respectively, and from the property

of antisymmetric states

PL(13) = -B_(i)) B (ij)
where Pr(ij) is the exchange operator in orbital space, it follows that

the scalar interaction potential may be written
(.)'= o L-T. + P - P P .
v v (Irl rJI) (w MPr(lJ) HRr(lj) + BPc(lJ)] (L.4)

where

B = 2a1 - 2&3

Low-energy neutron-proton scattering data8 indicate that the Serber ex-
change mixture, defined by W =M = 0.5 and H= B = 0, or by ag = 0.375,
a; =3, =a;= -0.125, closely approximates the actual case.

It has been found that the nuclear states are relatively insensitive

to the radial dependence of the scalar interaction potential for reason-

able well shapes.9 Thus, letting r = (r1 - r2), we assume for simplicity



that vo(r) has the form
vo(r) = vS(xr) PS + vt(r) Pt
where PS = %(1 -oq 02) and Pt = %(3 top cz) are the projection

_—

operators for the singlet and triplet states, respectively, and the

v8st(r) are taken to be Yukawa wells, i.e.

The parameter values indicated by scattering experiments are:

]
i

v =46 .9 MeV a

s ¢ = 1.17 F.

1.38 F.

v =52.1 MeV ag

t
These values of the range parameters ag and a, will be accepted, but the
interaction strengths Vg and V. will be retained as free variables.

A = 1. The existence of an interaction potential with a vector
spin component is necessary in first-order approximations to provide the

doublet splitting found in nuclear states. As is well known, a single-

particle potential which will give this splitting is

~

Uso = 2;: § (ry) {} - Sy . (1.5)

Many nuclear investigations, including all previous studies of the olé

and N16 nuclei, assume this single-particle potential to be the sole term
in the mutual interaction potential with a vector spin dependence. There
is evidence, however, that a potential of this type is not an actual

nuclear potential, but rather that it is an effect of a more complicated

potential.*“
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The only two-body potential which has a vector spin component and

satisfies all the invariance requirements listed previously is

vip = Vi) + - o1y) U’(r)](il tsp) e flz (1.6)

where

12 = 2y - 1) = (1 - pp)

Indications of the existence of this potential, which we will call the
vector interaction potential, have been summarized by Signell and Marshak
as follows:12

(1) Short-range spin-orbit interaction potentials originate in
field theory if nucleon recoil is taken into account.

(2) For a nucleon outside a closed shell, the vector interaction
potential produces on the nucleon an effective force of the type 51.& " 8.
This is, in fact, the only two-body interaction which in a first-order
treatment will produce the correct spin-orbit splitting.

(3) An analysis of 310-MeV scattering data shows a large spin-orbit
type scattering amplitude.

(4) The vector interaction potential is needed to explain a phase
shift in 150-MeV scattering data.

(5) An extensive computer search for a good phenomenological inter-
action potential with no velocity dependence ended in failure. Previous
calculations also show that the vector potential is attractive and that
U’(r) can be taken to be zero.13

Studies which employ only the single-particle spin-orbit potential

are, in essence, ignoring the mutual interaction through the vector
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potential of all particles outside closed shells. This has been found
to be a good approximation for nuclei in which only the lp shell is
occupied.14 However, the two-particle gpin-orbit interaction has been
found to play an important role in binding-energy calculations for nuclei

15 and consequently the vector

with the particles in the 1d and 2s shells,
interaction given by Eq. (I.6) with U’(r) = 0 is used in this study.

The nuclear states have been shown to be more sensitive to the radial
dependence of the vector potential than to that of the scalar potential.16
Therefore, we must choose the function v’/(r) more carefully than vo(r).
The usual well shapes, such as the Yukawa well, the Gaussian well, the
square well, etc., have been shown to give poor results in scattering

experiments17

and so are unacceptable. However, a reasonable approximation
has been found to be a derivative of a Yukawa well with a straight cut-

off, given by

1 d =X
vi(r) = Voo = ( 3;— OSrSro (1.7)
° X = Xg
V' r) =V .]_'..g_. ( 9-_x. ) - r <r
@) SO ¥ 3 X oST=®

where x = (r/aso). The parameters in this form of the potential well
have been found to be approximately given by18 Vgo = 30 MeV, agg = 1.07 F.,
and r, = 0.21 F. Once again, however, we will retain the interaction
strength Vggy as a free parameter.

A = 2. The existence of an interaction potential (hereafter re-
ferred to as the tensor interaction potential) with the spin dependence
given by a second-degree tensor is necessary to explain such properties

as the quadrupole moment of the deuteron. However, previocus calculations
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have shown its effects to be negligible in the first-order approximations

used in this study, and it is omitted in our work.
Methods of Approximation

The basis of the nuclear shell model is the idea that the interaction
of a nucleon with the rest of the nucleus can be replaced by the inter-
action of the nucleon with a central field. Obviously, however, a common
single-particle central interaction cannot completely replace the actual
mutual interactions in a system of many particles, and to be more practical
we have to consider corrections to the central field. We are therefore
interested in a system whose total Hamiltonian is given by H = Hy + Hy,
where Hy is the Hamiltonian of the central field and Hy is a residual
interaction added to make the total Hamiltonian more realistic.

For a system having one particle outside a shell with one hole,
the sum of the mutual interaction over all pairs of particles may be
separated into three parts:

Yo ovis =Y Vet Y. Gup t Vaw) - Vph (1.8)

i<j m<n m
where the sum over m and n is over all possible particle states in the
closed shell, p denotes the particle outside the shell, and h represents
the hole state. (Note that the sum over m and n does include h, but not
p.) The first sum on the right-hand side of Eq. (I.8) merely gives the
binding energy of the closed shells and we will arbitrarily take this to
be zero. This assignment in no way affects our derivation of the nuclear

states, but merely provides a reference point from which to measure energy

levels. We now make the fundamental assumption of our model: the

NP L
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interaction of nucleon with closed shells through the scalar interaction
potential (see Eqs. (I.3) and (I.4)) may be replaced by the interaction
of the nucleon with a central field. Thus the interaction of the particle

and hole states with the closed shell through v is given by

2 8 - v = Ulxy) - Ulry)

m
As noted in the previous section, the interaction of a nucleon with the
closed shells through the vector interaction term (see Eq. (I.6)) can be
replaced by the single-particle spin-orbit potential

Uso = ). Ei4i * Sy

where the sum is over the particle and the hole states. Thus the
residual interaction consists only of Ugy and the interaction between

the particle and hole states, i.e.,

Hl = USO - Vph . (1.9)

Although there is no rigorous theoretical justification for treating
nuclei by first-order perturbation theory, such an approach has led to
reasonable approximations in previous calculation,l*-6 and thus we use it
here. We assume that the eigenstates Iw) of the total Hamiltonian can
be approximated by a linear combination of the degenerate eigenstates of
the unperturbed Hamiltonian. Hence if the eigenstates IE?&) satisfy the

relation
Hy|EQe) = EQ|ESe)

then |¢) is approximately equal to ll) where
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1D = 11 a [ . (1.10)
o

Denoting the first-order energy correction by €7, then we find by use of

degenerate perturbation theory that19

'y ... a a
}C"‘l"’z K"'1°’1 @103 o o
X X X ce a = ¢ a (I.11)
%) ¥y ey o, 1 %
X (16 4 .. a a
gy T Ugly 030y o3 o3

where
Ky! = CESe|H; |EQe’)

Therefore by diagonalizing the matrix ngyl), we may evaluate the first-
order energy corrections and the corresponding constants a,s which

determine the eigenstate [1).
The Nuclear Potential Well

If the entire set of eigenstates |E2d) were used in the perturbation
theory calculations, the source of the eigenstates, i.e., the potential
well, would become irrelevant.9 In practice, it is possible for one to
deal only with the eigenstates corresponding to the lowest energy eigen-
value (or, in simple cases, eigenvalues). There is still no need to
introduce the well explicitly, and only the radial shape of the well

must be specified; no reference to its depth is necessary.
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The nuclear potential well is known to be flat over the bulk of the
nucleus and to climb steadily to zero at the edge of the nucleus, as one

may represent quite well by the Saxon-Woods potential

-1

V(r) = -V,[1 + exp ( E2R)]

Unfortunately, these features are not represented by any known well
shape for which the eigenvalues and eigenstates are readily obtainable.
Although numerical computations would give the desired information, such
labor seems unnecessary because the actual well shape can be approximated
by two idealized wells, the square well and the harmonic-oscillator well,
for which the spectra are known. Strictly accurate results cannot be
obtained by using these idealized wells. Nevertheless, qualitative
features may be determined quite well; in fact, a numerical calculation
using a Saxon-Woods potential of the wave functions and radial integrals
for nuclei of mass 38 shows a quite negligible difference from those
calculated in an oscillator field.20 For computational ease, we assume
that the nuclear potential can be approximated by a harmonic-oscillator

potential

U(r) = % sz r2

where M is the nucleon mass and W is the frequency of vibration of the
classical oscillator.

The eigenstates of the harmonic-oscillator potential are

)

an(r)
|¢n£m R

Y‘Z , ¢) (1.12)
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where Y? (8, ¢) is a spherical harmonic and the radial function an(r)

is given by
2 2
[2 (.%'j) 2z+3“!] i 241 2:,2 ”%‘ 2
ha(r) = - 3 r e L, ( ;i-) (I.13)
I'(m + 2+ -2-)
1+ 1

where L, (x) is a Laguerre polynomial and b = ( ;EL)Z is the harmonic-
oscillator length. (In this harmonic-oscillator notation, the minimum
value of the principle quantum number n is O rather than 1 as in the

usual nuclear notation.)

The energy eigenvalues for the harmonic-oscillator potential are

3
= + - h
Enz (2n + 4 2) w

Thus for this potential the 1ls and 0d states are degenerate. Since
experimental data indicate that the 0d energy level is about 1.16 MeV
lower than that of the ls state, we add this energy to the (Op)'1 (04d)

configuration in computing the energy matrix of Eq. (I.11).




CHAPTER II
EVALUATION OF THE ENERGY MATRIX FOR HOLE-PARTICLE CONFIGURATIONS

Previous calculations4 concerning O16 and N16 have shown that the

nuclear states are better approximated by a pure j-j representation

than by a pure L-S representation, and consequently j-j coupled wave
functions are used in this paper. This choice is not critical, however,
as we can transform the state vectors from one representation to the
other by means of the A-coefficients discussed in Appendix A. If we
denote by |3§b a hole in a state with quantum numbers j and m (the
quantum numbers n, £, s, T, m, being understood), then the energy matrix

elements of Eq. (I.ll) for hole-particle configurations are

Y Ara row
Bt = (i1i9 IM DMy [Ugg - v [31732 7 IM;T™p)

where Ugy is the single-particle spin-orbit interaction potential and
v is the mutual-interaction potential between the hole and particle

states. The matrix elements of the single-particle spin-orbit term are

found to be21

(3139 Mgy |Uggliq’ip” TMyTHp)
(11.1)
=L 6G1,3,1 800" 8Uay") BUyity®) BGapny”) 8Gayum,")

i (i - . 3., . . ) i 3
x { §n222 [J2(32+1) Zz(£2+l) 4] §nlzl [J1(31+1) zl(zl+1) ),

The parameters gn2£2 and gnlzl can be determined experimentally from

neighboring nuclei. The computation of the matrix elements for the
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mutual-interaction potential is more more complex and requires detailed

discussion.

Decomposition of Energy Matrix Elements into Orbital,

Intrinsic Spin, and Isotopic Spin Components

As shown in Appendix B, the matrix elements of operators in the
hole-particle configuration are reduced to matrix elements of operators

in the particle-particle configuration with the result

(Frapgniymin| v |5, 75, o ymu)
11
. 3y 3, J 22 T
= 23* + 1) QT! + 1)
PN, 11 q0
I’,1! J1 3z 2 2

U | . LY
[<J11J2JMJIJ 2 ZT/MTI' v |J1J2,J/MJI;E§' J.,MT/>

b

jptin (AT 4T

s 11 s 11
(-1) (51'3,9Mp0s 55 TMpd v 13,7379 M505 55 TMD T

Writing the general term of the scalar interaction as
v = (056 ) 0] W) Wiy v

and isolating the isotopic spin dependence of the matrix elements by use
of Eqs. (A.14), (A.18D), (A.5), and (A.6), we find the above may be ex-

pressed as
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- VO —._7. 7
(375.m TMT| |3112 T, )

17277
1 1, ,1 1 , Jp 3 J
-G Fepl H G FepI D) ey 1727
J! 117379

(I1.2)

1-T-K F3T q q
- =1l= 2 2 T s s 1
x LD 11, (33,3, ] [0 @ W @)@ |33, 3,
272

s g Tl
- (it Q%ﬁl (3773,3M,| W@ WY 0,) v () [5, /3,30 ],
The matrix elements in this equation could be evaluated by performing a
tensor expansion of the function V(]rl - r2|) and recoupling the angular
momentum part of the potential operator into a product of a function of
the coordinates of the first particle and a function of the coordinates

of the second particle.11 A somewhat easier approach, however, is to
transform the state vectors from the j-j to the L-S coupled representation

by means of Eq. (A.8). Accordingly, we find

(53, 3, | lWd o)) W@ )TV |5 3, 3% )

1, 1.
Lq 2 Ja zc 2 Je
= 1. 1.
= :E:: Al &7 db Al 243 id
LS
LIS’ L sJ’ L’s’J’

x (BT (£ L )8,0% | 0 0)) W0 V) | (Ut L’y (5 5 )SLTML0).
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The intrinsic-spin portion of the above matrix element may be evaluated

from Eqs. (A.14), (A.18D), and (A.3) with the result

(3,3, 3M G Wi )V 5 5 3m )

11
1. ,1 1 S+l 225
1
- A ey H Ge|p ) ey L
s Z2q (11.3)
1, 1l .

za 5 Ja zC E Je
xa | 4 L3y A | a3 g (28,1 |V () |4 44100 )

L s J/ L s J!

From Eq. (A,13A) and (A.15B) the reduced matrix elements: of the

intrinsic spin and isotopic spin operators are evaluated to be
1 1, _ ,1,.1. ‘
(3l 7> = ¢z llellzy = V6, (I1.48)
1 14 _
(x50 = 2 . (I1.4B)
Hence using Eqs. (II.2), (II.3), and (II.4), we find that the matrix

elements of the general scalar interaction potential of Eq. (I.3) is

given by
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< . ol~ 1
<3132JMJTMT|V lJl Jy ﬁMT>

t1 . 1.
PR S SR I
}:: 1 d2
= . I} 1 t 1 .
, (237+1) jlljzlJl A ) 7 J2 a '62 7 12
L,S,J L SJ L s J’
S+1 11s , ,
x lag + (-1)°7 " 6ay 2 2 108 20,1 |V () | 04, 120D
=21
2 2
L1#4o 1148
+ (-1) 26 (T,0){ 4, "4, 10, |V(x) | £, 4,14 ]
(11.5)
l1lg 11l
+ La,+(-1)5* 6a, 22 1[¢-Te) 22
11 11,
221 22
’ 7
x (472,10 | V()| 474, '1M,)
L1+, 14HLAS
+ (-1) 1772 26 (T, 1) (zl'zzLMle(r)lzz'zILML>]
For the Serber exchange mixture, defined by a; =a, = ag = -0.125,

ag = 0.375, an expression for the energy matrix elements which is not
immediately obvious from Eq. (IIL.5) may be derived by use of the permu-
[

tation operators. Letting

Vepr = % v(r)[1 + Pr(1,2)]
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we find by the same methods used previously that

(313, My Py vl 3, 73, "5y

1, 1 .
o 4!y’ o5
= E (237+1) 1 J2 I Ale 1 Al 2,015 2
ja! jzl J’ 2 3 12 2 312

L,S,J’
e ' L S J’ L s J/

7

x e, 20,1 v |2,8,7 >+(_1)z1+’22 +L+526(T 0){8, 4, 1M |V |24, 1M )]
1 L1 1Vepg | £ %, "1 20088 "y 1My [Vopp Ly "4y IM; 2 1.

Since

L.+, L

(8, 2,00 |VER_(1,2) 408, ™) = (1) 12 gt v ) |4, 01

it follows that the matrix elements for a scalar potential with a Serber

exchange mixture is given by

< . < 4. 2 -
(313 M Myl vgpel 3y '3, oM )

¢t 1, 1.
P 71 Ly 711
j
1 1 2 1 . ¢t 1 .
=3 E (2J’+1) Ce ot Ay 49 5 i Al 2y 5 J2
ii i
4
LSJ 12 L sJ’ L sJ’
21+ "L

x [1 + ¢-1)526(T,0)1Re1 4,1 |v(x)| 294 ' TM Y+(-1)
x (84,1 |v(r) |2, “4y1M)]

The decomposition of the matrix elements of the vector interaction
potential may be accomplished by the same procedures as those used for

the scalar interaction. The major difference in the two cases occurs in
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the evaluation of the reduced matrix element of the intrinsic-spin

operator. For the spin component of the vector potential, we obtain

from Eqs. (A.18B) and (A.18C)

, 1l g1
¢ 37 Sloytoylly 3 8O-+ L@ty @s '+ 3 2 1 C g lelgd
S =1
2

From the triangular conditions on the 6-j symbol and the [(-lf;+(-1)s']
factor, it follows that the only nonzero value of this matrix element
occurs for S = 8' = 1., Hence we find

(35 8llgrrar 13 55 = 2/8 6 (5,1)6(s",1).
Therefore, the matrix elements of the vector interaction potential are

T . ' T ors o
(313,0yDp| (8148,) 4y, v' (]33, MM I

1
z L j 1
. 1 2N
't jq 3y J{frLr'1

- L, T | b

J'L'L it 3l g L o1
1.
2150

x Mgyt 5 " | ey gLl v ()] 294, L)

Lol

+ (-1)41M2 L og 1,0y (01 4oL [£V(0) | | 82 411 7Y D

The matrix elements for the hole-particle interaction have now
been reduced to functions of matrix elements of the orbital portion of
the potential operators. Thus far we have used no assumptions concern-
ing the nature of the nuclear potential well. To evaluate the matrix
elements of the orbital portion of the interaction potential, however,
we will employ the harmonic-oscillator wave functions, and our calcula-

tions will be only approximately valid for the true nuclear potential.
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Evaluation of Orbital Matrix Elements

by Use of Transformation Brackets

The evaluation of the orbital matrix elements is complicated by
the fact that the operators are functions of the relative coordinates,
r; - Eél and LRl - £2|, whereas the state vectors are essentially
products of a function of__1:1 and a function of r,. One approach to
the solution of this problem is to reduce the matrix elements to a
sum of Slater integrals by using a tensor expansion of the interaction
to factor the angular dependence of the potential operator into a function
of (91,@1) and a function of (92,¢2).10 A simpler approach utilizes the
transformation
|n 8q,m,8,,1)

=Y . |nend, 1M (nt ML L nyLq 098, ,L)
T4

where ‘an£> and ThiM§> are functions only of the relative and the center-

(2.8)

of-mass coordinates respectively. This expansion can be made in closed
form only for harmonic-oscillator wave functions.2? The factor
(nz;hi,Llnlzl,nzzz,L) is called the Moshinsky transformation bracket and
its evaluation is discussed in Appendix C.

Using Eq. (2.8), we find for a general potential, V(r,p),
(81,098, ,IM|V(r,p) |0y '8y 0y "0y ', LM")
= E:z; (nﬂ,mf,L|n1£1,n222,L><n'£"m'i':L'lnl'zl"n2'zZ'L'>

ndnd
n'g'n'k'

2.9)

X (nL{hi,lMlV(r,p)|n'L;?ﬂa',lM>.
The matrix elements in the center-of-mass and relative coordinates con-

figuration are easily evaluated by the techniques of Racah algebra. For
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the orbital portion of the scalar interaction potential we find by
using first Eqs. (A.14) and (A.18B) and then Eqs. (A.3) and (A.15A)
that
(ng,ng,M|vO(x)|n'4" 04", 1)

- (_1)!,+=f+L(2L+1)}2’{£"i’ i}(nl“vo(r)l|n'£')6(i’,£')8(‘h,%')

RO(nl,n'2")8 (4,4')8 (£,L")6,n")
where
R (ng,n'4") =[7 Ry, ()RR, 1y (x)dr (2.10)
Therefore the matrix element of the orbital portion of the scalar inter-
action potential is
(n181,n242,1M|vO(r)|n1'41 " ,n2 "4y ', 1) (2.11)
= 2::<n£,%£,L|n1L1,n2£2,L)(n'thf,L|n1'Ll',n2'Lz',L}
e
x R°(ng,n'L).
Applying conservation of energy to Eq. (2.8) we find that
201+ F2np+y = 202N+,
and hence n and n' in Eq. (2.10) are related by
n'-n = n1'-n1+n2'-n2+%(£1'+£2'-21-22). (2.12)

For the vector interaction potential we find in a similar manner that

<n1£1,n2£2,L|| ’_& V(r)||n1',€,1',n2'£2',L'> (2.13)
= ) (DAL QL) Ui+ g0k (a4 1344 T "f}

~ L' 4 1

nE

x {(ng,n¢,L|n141,n242,L){n "4 N4, L' [n1' 241" ,n2 42", L YR* (nd,n'4).

Once again n and n' are related by Eq. (2.12).
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Evaluation of Radial Integrals

The components of the energy matrix have now been reduced to functions
of the radial integrals RK(nL,n'z). These integrals can be evaluated in
the form given by Eq. (2.10), but it is more convenient to reduce them
to linear combinations of Talmi integrals, i.e., to expand the radial
integrals by

K
R (ag,n'0) = ) [ BL,n'4,p)T) 2.14)
P

where the Talmi integrals Ig are defined by

II; =7 R%va(r)dr.
From Eq. (1.13) we find
2(%)2p+3 . _ _Ei
1K = —F Io 2Pt2 b2 vK(r)dr. (2.15)
P et3)
where b' = /2 b.
23

The constants B(nf,n'4,p) are found to be

%

-1)P 2 2p+1)! [n'n'! @n424+1)! @n'+24+1) !

B(nf,n'4,p) =

27 (o1 @) ! (a'+0) !
s W+k) ! (p-k) .
. k=r k!(@4+2k+1) ! (m-k)! (2p-2ktl) ! ('-pHLtk)! (p-L-k)!
where
r = max (o,p-4-n)
s = min (n,p-4)

To proceed further in the evaluation of the radial integrals we must
introduce the explicit radial dependence of the mutual interaction poten-
tial. For the Yukawa well used in the scalar interaction potential, we

find by substituting
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- L
Y e 2
v (r) = Vy —
() = vy —
a
into Eq. (2.15) and letting
= + b
SRR i

that the Talmi integral Ig may be expressed as

Y _ 2p+1VYeu

2
-x 2p+l
I T ——— e . & dX
o T AT & W

where iy = b'/(2a) and

(2p+1)!! = 1X3X5:.- (2p+l).
For p =0 and p = 1 we find

v 2
Y- .Y 2 M
It =22 -2
o 2“' [7? we erfc (].L) ] (2 .16A)
Y _Vyr 2 3, 2\ .02
I =1 1+,2) - 2 M _
T3 [ﬁ (1u2) - 20 Gu?)e erse @) (2.168)

with

P
erfc (@) = 7%-Iu e ™ dx.

The remainder of the Talmi integrals for the Yukawa potential can be found

from the recurrence relation24
2
Y 2 2u°-+3
I )y = <P [+ & 2 Yyip@) -1 )] (2.16C
p+1(“' ve 7 )Ip G p_l(P: )

The radial integrals for the vector interaction potential are more
complex and satisfy no general recurrence relation. Fortunately, however,
we are interested in only three of these integrals. Substituting Eq. (I.7)

into Eq. (II.15), we find the Talmi integrals for the vector potential are
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+2
2P L

o o g2
ISo —% (1+a] e fp e~ ¥ x2p+2 dx
o )

=t v
P apr gm0

2 .» -
22 & [ e [x oy ] @ - P 1dx}

where

’

To a b r
C{=-—-—,)\=b._’5.9 ’U‘=2 3Y=‘E'(,Z+
230 430

These integrals may be evaluated in terms of error functions.

16

Application to the 0~ and N16 Nuclei

The formalism has now been developed for the computation of the
energy matrix for nuclei that can be described by a particle-hole config-
uration. The parameters of the mutual interaction potential are the
same for all such nuclei, so that only two types of constants must be
determined for each individual nucleus: (1) the harmonic-oscillator
length b which determines the nuclear radius, and (2) the spin-orbit
splitting parameters Ep and §;,. (There may be more than two of the
latter if the particle or hole states are in degenerate oscillator con-

16

figurations.) For the 0 and N16 nuclei the harmonic-oscillator length

has been found to be8 b =1.71 F. and the spin-orbit splitting parameters

-2.03 MeV.

to be’ £ = -4.22 MeV and Euq

Within the framework of 6ur assumptions, the only difference between

the nuclei of O16 and N16

16

is that the isotopic spin projection quantum

16

number My of 07" is 0 and of N°7 is -1. Following from this, the lowest-

lying excited states of 016 are found to have the total isotopic-spin
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quantum number T = 0 and those of N16 to have T = 1. We also assume
that both nuclei can be described completely in terms of the following

basis states:

Opy 1sy JM_ T 0Op-
| Py lsp MM T> > |0Opy 0d3 I ™)

) )
|opl 0ds JM_ mT:) , |0p§ lsy M TMT.> ,
2 2 2 2
|op3 0d3 oM m) , [op; 0ds5 M )
2 2 )

One unusual feature entering our calculations concerns the cor-
rection which must be applied for the motion of the center of mass as
a whole. It has been shown25 that basis states of mixed configurations
constructed according to the usual shell-model prescription may contain
components describing different states of motion of the center-of-mass.
Certain linear combinations of the basis states must be rejected because
they refer to lower states of internal motion in overall translational
motion. Hence, a new set of basis vectors which refer only to the

lowest energy of the center of mass must be constructed.

It is shown in Appendix D that in the J =1, T = 0 state of 016
an excited center-of-mass motion corresponds to the state vector
H’A> = - ‘2—2— |6;1 1sy 1M;00) + @ |6;1 0d3 1M;00)
2 2 2 2
1 Do . E A -
+5 0py 1s; ;00) + 3 [Ops 0d3 1;00) (11.18)
2 2 2 2
+ % |op; 0dy 1M;00)

372
2 2
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The acceptable basis vectors corresponding to lowest center-of-mass

energy are

—— 2 —
lvg) = ggg |op; 1s; m500) + %: |op; 0d3 1M;00)
2 2 2 2
5 53 . /10 (5= .
2 2 2 2
+ J10 |Op3 0ds M;00) ,
o3 32
J6 |7o 3=
l4¢> = 3> 10py 1s; 1500) + % |0y 1s; 1i500) (11.198)
2 2 2 2

173 15 33
2 2 2 2
(II.19C)
V30 |53
- =5 |op§ 0dg M;00)
2 2
V2 oo oo
Vg = o5 |0p1 0d, 1M;00) - i%§'|OP3 0d, 1;00)
2 2 2 2
(1I.19D)

One may correct for the center-of-mass motion either by calculating the
energy matrix using the vectors given in Eq. (II1.19) as basis vectors or
by calculating the energy matrix in the original set of basis vectors
and then transforming it so that the spurious state can be dropped.

With the exception of the spin-orbit splitting and the character
of the exchange mixture associated with the scalar interaction potential,

all parameters involved in calculating the energy matrices of 016 and

N16 must be specified only during the evaluation of the radial integrals.
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Therefore it is useful to express the matrix elements for the scalar
interaction with a Serber exchange mixture and for the vector inter-
action as functions of the Talmi integrals. The coefficients N; and

C; defined by

- . bt S J
(313, M M| vgpeliy '3, "o Iy
(II.204)

_ S .S S .S s .S
=N, {lcy 15 +¢] I +C; T;1[1 + 28(T,0)]
~ t .
+ [, 18 + ci Ii + Cg IE][I - 28(T,0)]}
and by

S ! S 1. 0
(313, MyTgl 8y + 85) V" ()[3;"3p " ymi)

S0 _S0 S0 _SO S0 _SO

= N, [cl I +C I, +C5 I3) (II1.20B)
SO _SO SO SO SO .SO
- 26 (1,0) (¢ I]0 +C,° L +C3 I, )]

may be evaluated by the methods outlined in this chapter. Tables for

7 and the 3-j symbols,28

the necessary A-coefficients,26 the 6-j symbols,2
have been published. The results of these calculations are listed in
Table I.

The evaluation of the Talmi integrals in Eq. (II.20) for the range
parameters listed in Chapter I may be performed by use of Eqs. (II.16)

and (II.17). Retaining the interaction strengths as free variables, we

find the integrals to be
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s _ s _ s _

I,° = 0.127 Vg 1,° = 0.03 Vg 1,° = 0.015 v,
t t . t

I,t = 0.180 v, 1, =0.057 v, 1, = 0.026 v,
S0 50 50

1,7 = 0.029 Vg, I, = 0.006 Vg, 1,7 = 0.002 Vg,

In accordance with their experimentally indicated values, VS and
Vt were varied from -30 MeV to -60 MeV and Vgo was varied from 0 MeV
to 40 MeV. The eigenvalues and eigenstates of the resulting energy
matrices were calculated on the Univac 1107 Computer at the University

of Alabama Research Institute.




CHAPTER III

COMPARISON OF THEORETICAL PREDICTIONS

WITH EXPERIMENTAL DATA

An analysis of the importance of the vector interaction potential

to the O16 and N16

nuclei is complicated both by experimental ambi-
guities and by theoretical approximations. Nevertheless, qualitative
conclusions may clearly be drawn from a comparison of theoretical
predictions with experimental data. In this chapter the influence of

the vector interaction potential on the energy levels and on the beta-

decay and muon-capture transition rates is discussed. An investigation

of the electromagnetic transitions was performed by Elliott and Flowers,4

but corrections for the collective oscillations of the closed-shell
core were found necessary. Hence, an accurate treatment of this effect

is beyond the scope of this work.
Energy Levels

A study of the absolute energy of the nuclear states requires an
accurate determination of the binding energies of the particle and hole
states. Previous investigations of these nuclei have used binding
energies found experimentally or have merely chosen the binding energy
giving the best theoretical predictions. Obviously, however, these
procedures do not add materially to the theory, and accordingly,we

investigate only the splitting of the energy 1eve1s,since this may be
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done entirely within the framework of our previous assumptions.

At the outset of the comparison of the energy levels with experi-
ment, it must be noted that such neglected processes as the Coulomb inter-
action between protons have a greater influence on some of the energy
levels than does the vector interaction potential. This is obvious from
a comparison of the T = 1 states of 016 and N16, which according to the
assumptions of this work should be identical. However, there is a shift
in the relative energies of the levels of as much as 0.3 MeV between
the two nuclei. This is, in some cases, greater than the shift caused
by the vector interaction potential.

The relative energy levels of the T = O states of O16 are presented
in Table II. As can be seen, the theoretical prediction of the 0~ and
2" energy levels using parameters indicated by scattering experiment
are about 1 MeV too high. However, the energy levels of all states are
predicted reasonably well for several sets of interaction strengths,

two of which are

v -40 MeV s -35 MeV VSO 15 MeV

<<}
]

t

and

20 MeV.

-45 MeV v
t s

The energy levels for Ve = ~-45 MeV and VS = -40 MeV and extreme

]
it

v ~40 MeV Vso
cases of the vector interaction strength are also listed in Table II.
Although the influence of the vector interaction potential on the 0~
and 2~ states is too small to be of importance, its effect on the 1
state is pronounced. This is significant because the largest error
for V.. = 0 occurs in the 1 level, and a value of VSO = 15-20 MeV

S0

provides a good approximation for the energy of the state.



TABLE II

ENERGY SPLITTINGS FOR T = O

38

Interaction Energy Relative
Strengths to 37 Level
v, Vg Vso 0 1” 2"
(MeV) (MeV) (MeV) (MeV)
=50 =45 30 5.76 0.97 3.77
-40 -35 15 4.49 1.00 2.82
; =45 -40 20 5.08 0.82 3.11
-45 -40 0 5.33 1.87 3.10
i -45 =40 30 , 4.95 0.17 3.12
Elliott-Flowers? ; 7.0 2.1 4.2
Duck? 5.8
Gillet® 3.8 -1.2 3.2
Experimentald 4.80 0.97 2.74

85ee reference 4.
bSee reference 5.
CSee reference 6.

dSee reference 30.
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TABLE III

ENERGY SPLITTINGS FOR T = 1

Interaction Energy Relative Total
Strengths to 2° level Splitting
A vy Vso 0 1 3

(MeV) (MeV) (MeV) (MeV) (MeV)

-50 -45 30 0.50 0.38 0.57 0.57
-40 -35 15 0.21 0.21 0.19 0.21
-45 -40 20 0.30 0.05 0.33 0.33
-45 ~40 0 -0.21 0.79 ~-0.02 1.00
-45 -40 30 0.72 -0.23 0.60 0.95
Elliott-Flowers® -0.1 0.6 -0.2 0.8
DuckP 2.8 1.4 1.2 2.8
Gillet® 0.7 0.6 -0.2 0.9
; 016 -0.18 0.13 0.29 0.47

Experimental 16

N 0.12 0.39 0.29 0.39

8gee reference 4.
bSee reference 5.
CSee reference 6.

dSee reference 30.
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The energy levels of the T = 1 states are too closely packed to
make meaningful predictions about their order. However, the total energy
splitting of the states is approximately the same for both 016 and N16,
and it is instructive to determine this splitting for various choices
of the interaction strength parameters. As can be observed in Table III,
the effect of increasing VSo is first to decrease the total energy
splitting and then to produce a spreading of the energy levels of the
four states. For Vi = -45 MeV and Vg = -40 MeV, a value of Vg of
10-25 MeV provides an approximately correct total energy splitting.

Primarily due to the form of the scalar interaction potential,
the energy levels obtained by our model of the nucleon-nucleon inter-
action are a notable improvement over those of previous studies of ol6
and N6, The vector interaction potential has only a small influence
on the energy levels, but it does enable us to decrease our largest

error from about 1 MeV to about 0.4 MeV. The best theoretical predic-

tions occur for values of the vector interaction strength of 15-20 MeV.

Beta Decay of 2~ Level of N16

The 2~ level of N1© decays by a beta transition to the ¢ (ground),

37, 27, and 1~ levels of 016 with branching ratios as shown in Fig. 1.

2
0l -
2
05 e
.6 3-
26
+
0
N16 016

Fig. 1. Beta decay of N16
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The beta decays to the excited states of 016 are allowed transitions
since IJ-J" = 0,1 and M = n'. However, the transition to the ground
state of 016 is characterized by |J-J'| = 2 and a change in parity and
hence is first-forbidden unique.

Employing a spherical-tensor notation for the beta-decay operators,29
we find that the fot value for an allowed transition from a state
EE;jQ'J'MJ'; 1-1) to a state |3;jaJM

75 00) is given by (in units

determined by # = mg = ¢ = 1)

s %
£t = 2—’]*“2“ (63,3060, 55, 80,55 NI@IHD (G ||y | |32)
A I ,
- @3 G Y] )] (3.1)
A JHi,+i, T I 1 .
Tagr O TR eS8 )

g Jzg 4
1 . 1

Gy 1801 1317

A M
where G and AG are the vector and axial vector beta-decay coupling

m
constants respectively, YZ is a spherical harmonic, and

M-m m_M
SJL— [YL x0'1 ]J .
In a like manner, the flt value for a first-forbidden beta transition

from a state |3;'j2J'MJ, 1-1) to a closed shell is found to be

™ 1n2 . -
fe= e @34 (4] ]85, |13, )P - (3.2)

The values of the constants used in our calculation are G = 3.09 x
10712 and ) = 1.18. The reduced matrix elements in Eqs. (3.1) and
(3.2) are found to be

'+
) e
*n

(j!!rnY !!J = (- 1)J+1|_(23+1) (23'+1) (2J+1) i Jj ) L1+( -1

4y X0 -%
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and

P
LIV N
Gt L

Lo |

. n, P = (-1)
Gl )37 = (D7 L — ot

[

4 _(24F1) (24'+1) (2J+H1)_% (z L ""')A

where
F_ = [r"RR'd
n = fr T,

The log ft values for the beta decay from N6 to 016 are tabulated
in Table IV for various sets of parameters. An increase in the vector
interaction strength is seen to produce an improvement in the theo-
retical predictions of the 2°437, the 27427, and the 2.0t decays.
However, the influence of the vector potential on these three decays
is small compared to that of the scalar potential, and good approximations
are obtained even for Vgo = 0. In contrast, the vector interaction has
a decided effect on the 27,17 beta decay, and herein is found perhaps
the best argument for the inclusion of the two-particle spin-orbit
interaction in the mutual interaction potential. Although, as seen in
Fig. 2, the exact experimental results are not predicted for any reason-
able value of the vector interaction strength, the theoretical ft value
of the 27-1" decay is reduced from about 800 times its experimental
value to less than 4 times its experimental value as the vector inter-
action strength is increased from O to 20 MeV. Since this beta decay
occurs in neither the j-j nor the L-S coupling extremes, it is very
sensitive to the exact form of the nucleon-nucleon interaction, and the
inclusion of such effects as the tensor interaction and the Coulomb

interaction,in addition to a more accurate evaluation of all parameters,

)
is obviously necessary to produce strictly correct results. Accordingly,

A X7

it is difficult to determine Vgy exactly, but a value of 15-25 MeV is

e
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TABLE IV
10G ft VALUES FOR BETA DECAY OF N'©
Interaction Strengths Log fnt Log flt
(MeV) (Sec) (Sec)
v, v, Voo 27417 272" 27.3" 27,0t
=50 ~45 30 5.40 4.39 4.67 8.07
=40 -35 15 6.03 4.29 4.57 7.97
-45 -40 20 5.58 4.37 4.62 8.03
-45 -40 0 7.73 4.21 4.68 7.92
-45 -40 30 5.40 4.45 4.60 8.07
Elliott-Flowers? 7.9 4.2 4.65 7.88
DuckP 4.81 4.15 8.38
Gillet® 7.13 4.32 4.74 7.87
Pure j~j ® 3.95 4.43 7.68
Experimentald 5.1 A 4.6 |8.0-8.2
aGee reference 4.
bSee reference 5.
CSee reference 6.
dsee reference 30.
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Fig. 2.-- Log ft for 2 -1  Beta Decay
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needed to produce an overall good approximation to experimental data.
016 Muon-Capture Rates

A single-level muon-capture calculation for 016 with corrections
for effects of finite nuclear size and relativistic muon wave functions
has been performed by Jacob.31 Taking the induced tensor form factor
gr to be zero and the induced pseudoscalar form factor gp to be 8\,
where A = 1.22, we find the muon capture rates to the 07, 17, and 2~

levels of N16 to be, respectively,

Ao = 1.807 x 105 [0.1126 A - 0.2441 E, P,

A, = 1.797 x 10° {[0.0715 A + 0.3544 B + 0.2066 D, + 0.4085 E,
- 0.0255 F, T2 +[0.1596 A - 0.0520 B - 0.0215 D,
+0.1435 E, - 0.4063 F, 1},

A, = 1.793 x 10° {[0.0998 B,+ 0.3876 C, + 0.2117 D, - 0.1514 E,

+ 0.3600 stz + [0.0776 B, + 0.1241 C, + 0.0218 D,

0.0789 E, + 0.1129 F,7°}
where the coefficients are defined by
45 =1 = AJl'E)-I)_%-ls%JM) + B;|0py,0d )
+ cJ|o_p;2’0d JMy +D|0p s, JM)
+ EJ|BE'0d My + FJ|6'p—0d JM)

The resulting capture rates for various sets of interaction strengths
are presented in Table V. Comparison of the theoretical rates with ex-
periment is complicated by the fact that a determination of the caﬁture
rates by Astbury, et gl.,32 at the Lawrence Radiation Laboratory in
Berkeley resulted in values different from those obtained by Cohen, Devons,

33

and Kanaris~”~” at Columbia University. This ambiguity occurs principally

in the transition to the 0~ state, which is independent of the vector
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Vi Vs Vso Ao M Ay
-50 -45 30 1.71 1.44 13.3
-40 -35 15 1.78 | 1.87 16.3
-45 -40 20 1.73 1.50 4.4
45 <40 0 1.73 3.12 17.7
-45 -40 30 1.73 1.08 13.5
Elliott-Flowers’ 2.87 3.93 19.1
Duck® 1.26 1.87 5.78
¢illetd 2.27 2.12 19.5
Pure j-j 2.29 5.50 29.7
Experiment A® 1.6 £ 0.2 1.40 £ 0.20
Experiment BE 1.1 £0.2 1.73 + 0.10 6.3 % 0.7

8A11 capture ra
bSee reference
CSee reference
dSee reference
€See reference

fSee reference

tes are in units of 103
4.

5.

6.

32.

33.

sec'l.
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3.0 }\

2.5 ¢+

Region A
2.0

0, /9

W/ Z
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So()

Fig. 3.-- Muon Capture Rate to 1~ Level of 16

Kegion A corresponds to the experimental results of
Cohen, Devons, and Kanaris and region B to those of Astbury

et al.
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interaction potential. For reasonable values of Vg and V. the A, pre-
dicted by our model agrees with that of Astbury, et al., but is about
1.5 times that of the Columbia group. A study of the transition to the
1- state of N'® is more instructive, however, since the Ai's evaluated
by the two experiments almost overlap. As seen in Fig. 3, this transi-
tion rate for Vt = -45 Mev, VS = -40 MeV, and VSO = 0 is about twice the
experimental value. An increase in the vector interaction strength
produces a decrease in the theoretical transition rate, and for values
of Vgy between 15 and 25 MeV the 1~ capture rates of the two experiments
are predicted. In contrast, the A2 measured by the Columbia group is
unattainable using our model of the nucleon-nucleon force. Although an
increase in the vector interaction strength produces a definite improve-
ment in the predicted A, , the theoretical rate for all reasonable
parameters remains about twice the experimental rate. The Berkeley
group, whose A0 was predicted by our model, did not measure AE.

The muon capture rates obtained in this investigation are in every
case an improvement over those of Elliott and Flowers and of Gillet.
However, the capture rates calculated by use of Duck's wave function.
provide a good approximation to the experimental results of Cohen,
Devons, and Kanaris. The poor experimental agreement obtained by Duck
in energy level and beta-decay computations indicates that his success
in muon capture may be largely coincidental, but a more accurate experi-

mental evaluation of the muon-capture rates is obviously necessary to

eliminate completely the confusion.
Conclusions

The comparison of theoretical prediction with experiment shows
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that the two-particle vector interaction exerts a significant influence
on several properties of the 016 and N6 nuclei. The most pronounced
of these is the reduction of the ft value of the 271~ beta decay
from 800 times its experimental value for Vgg = O to less than 4 times
its experimental value for VSO = 20 MeV. Smaller, but still important,
improvements in the theoretical results occur in the prediction of the

16, and the rate

1- energy level of 016, the total energy splitting of N
of muon capture to the 1  level of N16. The effect of the vector inter-
action potential on all other properties investigated is small, but with
the exception of the 2- energy level of 016, the best theoretical predic-
tion of each property considered is obtained for VSO greater than 15 MeV;
in fact, with the possible exception of the muon capture to the 2~ level
of N16, a good approximation to all experimental data considered is
obtained for the interaction strengths Vt = -45 MeV, Vg = -40 MeV, and

v 0= 20 MeV. These parameters compare favorably with the experimentally

S
determined values listed in Chapter I. The corresponding state vectors
for the low-lying odd parity states of 016 and N16 are tabulated in

Table VI,
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APPENDIX A

FORMULAS FROM RACAH ALGEBRA

Coupling Coefficients

Clebsch-Gordon coefficients and 3-j symbols.

coefficient (jlml Jom, ljl Jg JM) is defined by

| 3y 3o ) =Z(.31“’1j2“‘2 |3y Jo 057 |3y m 3 dpm )

The more symmetrical 3-j symbol is related by

g 4| (Dhh

m m m (23, +1)%

The components of the 3-j symbol must satisfy
m, tmptmy = 0

and the triangular condition p (jljajB)’ or
IJ'_1 -3, 'Sja <Jj, +iy

The symmetry properties of this symbol are

Gymy Jpmy | 3y 3p 3, -my ) -

The Clebsch-Gordon

i i35 3 . I N T R T I PR B S
. = = (-1)
HHm Lmw mmn
and
i, dp ] jy gt N |
= (-1)

(A.1)
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The orthogonality relation of the 3-j symbol is

mm M M M momomy 2j3Hl
Ifm =m =my = 0, then the value of the 3-j symbol satisfies
. . . . ! 3 ] - l%- 1]
P T (2g-23,)° (28-23,) ' (28-23,) ! g:
0 0 0 (2g+1) | (a3, 1 -3, 1 (&3,

if 2g = j1+jz+j3 is even, and

By 3

I
Q

0 0 0
if j1+j2+j3 is odd.

Racah coefficients and 6-j symbols. The Racah coefficient is

defined by
y 3y 3y 93,
|Gy 3303, 3,0 = 22 [(23,, +) (23,,+1)] W | Gy 330,535
J}a J13 d2

The more symmetrical 6-j symbol satisfies the relation
By 2 Y P N PR M P M A
= (-1) W
jl 1] ja 1 J’ JJI
This must satisfy the triangular conditions

The symmetry properties are

Two special values of the 6-j symbol are
jl jll 0 _ (_1)j1+ja+j
i o' i [ @ D@L

§Cy >3, V68U 035" (A.3)
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and
5, Gyt oty 2501 @a) LGy, T, D]
=(-1) (A.4)
. AR R (23, +23,+1) 1 Gy "+ip -3y 0D !
y}-
Gy Higtig '-35y 1) TGy ¥y a1 E U, THI=3) PGy RI-3) !
X
Gy +ip "=3) LGy HI=dg ') LG, g HIFD (G Hy T-0) (G +I-5, D (G, T HIHD)
The orthogonality of the 6-j symbol and other sum rules are given by
> (23+1) - @A.5)
. . . . . 1
3 i 3, J i3 3 J 2J+1
: L3 . f'. . 3 .
EE:: jHIHT! ' jy 3 3 A P i, Ja J
(-1) (23+1) = , (A.6)
j LI W I O O SO i, 3 3
3y dg 3 23, +iy)
Y @i+) = (-1) (A.7)
3 iy ds B
The 6-j symbol is related to the 3-j symbol by
- 5 PR PO T T S PR PO ) E ( 1)1&1+£2+23m1 "t Hmy
momy mf | L Ay Ly L AR Y
hil 4 o B\[A &
“& “bl -ma' _“‘11 “b mal “_)11 -ﬂb' ma
A-coefficients and 9-i symbols. The A-coefficient is defined by
. . > hohohy
| GGy ig)dyy (G303, M) = A 3y dy I (4.8)
J1a‘]3‘f J12 ‘Ia‘f J

x |Gy g0y Gy 4y ) By T

The 9-j symbol is related by

B 3 I 3 (4 3 I3
poh Ble e e, )ei ey, I |5 Rt
J1a Jy J J1a JB‘I J

The symmetry properties of the 9-j symbol are shown by



o3 Ja v Ty o Ja s )5 3y Ly
Ja M4 Jaq = ‘?13 ‘5[3'-' = I3 Jy Jae =(-1) 1y I3 J13
Jya Fy o3 N3 Jay I 912 %
where
Z = 5yt H Y, H

Each row and column of the 9-j symbol must satisfy a triangular condition.

The 9-j symbol is related to the 3-j and the 6-j symbols by the equa-

tions
Jipg B J J:1 J:a Jiz E B Jp Jia
. J3 J‘I J3lf =
Mg My M I3 oy J mooymym, M My om M,
L 3y J Jp 35 s Ja Jy Joy T3 Ty J
x‘3 ! , (A.9)
my my My, m my M, my my My, Ma M, M
i o Ja dig 23'-Z g Ju J Ja 0 Jp T {3 32 J
NV P I (23'+1) i e
] ’ s 1 .
3 Ja J J Jay Jy3 J Y I AT
(A.10)
I iy J jpHH, 'K yVd, Jp J
= (-1) [QIHL) @R+ 5, ' I L . (A.11)
’ 4
g 3, K K K O

Reduced Matrix Elements

The Wigner-Eckart theorem states3%4 that for irreducible tensors T%
the dependence of the matrix element (jmlT%'j'm') on the projection
quantum numbers is entirely contained in the Clebsch-Gordon coefficient:

(j'm' 14| § 'Ljm)

(sm|TL|3'm") S TERY

2j'+1
(A.12)

il
~
]
oy
~

ATl it -

-m
The quantity <j||T||j') is called a reduced matrix element of the set of

0 . I
tensor operators T?. 1f TL is a Hermitian operator, then

JERENN
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1 - J-J' Wt
(I T3y = (-D) T ]I (A.13)
If Tg is an irreducible tensor of degree zero, then
(M| TO| "My = 7%_,?[- (3] To| | 3y6 €3, 3" )6 (4, 1") . (A.14)
Reduced matrix elements of some operators in frequent use are
(3l1]ary = &3 53,31, (A.154)
<J| LJ_| |J') = JI(G+D) 2J+D), (A.15B)
X
"o - 4| 24+1) QR+1)(24'+1) | {2 K g
211, 112"y = (-1) s (A.150C)
Al 129 b 000
i+ (1R 5\t
o3| || 251"y = (-1) [ Q1) (23'+1)] ‘o ) > . (4.15D)
0 -

For harmonic oscillator wave functions, we can evaluate the following

reduced matrix elements
(e[ [n'") = @e¥ {Cutps an )
- [Nt TEg (a',n-1) - [ (@) (D ¥ (', nd1)) 52,81,
(ne||x|[n'e"y = (24'+H5)%('010|£"'120)
x {[@HgPsn,n’) - vAs (a,0'+1) 75 (454" -1)
+ [ (nkgH)s (n,n") -VAFL (n,n'-1)75 (g, 4'+1)} -

Tensor Products and Their Reduced Matrix Elements

The tensor product of two tensors is defined by

k k E
[TleTKk"’ Ik = . (K k, Kk, |K KK k )'1?11211 TE
1 2 k1
The scalar product of two tensors is defined by

K
T Ug = (-1) V2KH[ TpxUp ]9

E:Z _1yPyTm
m (-1 TKUK

(A.15E)

(A.15F)

(A.16)

(A.17)
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T = [ O x 1 @]

1 and 2 being different spaces, then the reduced matrix element of Tg can

be

decomposed as follows

<a1j1°bsz||TKl‘ai'jl'°%'js'J'>

y |1 J2 I
= [ @) @) @I+ 151 5y 3 ' 3" e da |, [lag 3000 52 |17y, [ los '32
K, K K

For cases in which T, (2) = 1 or TKg(l) = 1. We have respectively

ke .
<Q'1j1%j2‘]| ITKI (1>| Ial 'jl Iaz ljz 'J'):(-l)j1+ja+J'+K1[(2J+l) (2J'+1)]%

(A.18B)
ji J s
X <dljll]TK1||a1'j1 '>6(a2’az')5(j2,j2')s
I3 K
<d:jzabsz||Tgé(2)llaa'j;'o@'jg'J'>=(-1)31*ﬁa'+J+K[(2J+1)(2J'+1)]%
(A.180C)
b3 1
x (o dal |7y Iloz '3z 6 @00 D8 G L0 -
J' ' K

The reduced matrix element of the scalar product of two tensors is

. . . s 1 jo +J+i, !
(a’ljl%JlelTK(l)'TK(Z)Ha'l iy 'op g '3")=(-1)d T o
(A.18D)

J
xg Mo g oy "5 o s | [T @) | s iz Y6 (I, 0"



APPENDIX B

REDUCTION OF HOLE-PARTICLE MATRIX ELEMENTS

TO PARTICLE-PARTICLE MATRIX ELEMENTS

The convenience of the occupation-number representation of Dirac35 in

evaluating matrix elements of sum operators between states differing from

closed-shell configurations by a few particles was first noted by Brink

and Satchler.3® An outline of their theory is given here, and the results

are used to reduce matrix elements of operators between hole-particle con-

figurations to matrix elements in the particle-particle configurations.
Let ﬂl and Ty denote respectively the creation operator and the

annihilation operator for the single particle state Ia). For fermions

these operators have the commutation relations

Ma Mo +Mb Ma = O, (8.14)
ﬂz ﬂE + ﬂﬁ ﬂl =0, (B.1B)
My T+ 18 Ma = 8ab. (8.1C)

The occupation number n, of a state |a) is an eigenvalue of the operator
+ .
na na, i1.e.,
1-
Ta ﬂa|a> = na|a>-

For fermions we have, of course,

A closed shell can be represented by a single vector |n, =1, allm)
Jjm
which we will denote by lC); thus
N Malcd = |c) for all |a)ele). (B.2)

The addition of one particle outside the closed shell, in the single
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particle orbit |jb my), gives the resultant state
D) gy m) =M o)
On the other hand, a shell filled but for a particle in the state ljama>
necessarily has a resultant angular momentum (jg,-mz). This we can repre-
sent by the vector
| €-D)ipmmg) = (-DIaTamy o)
The phase factor (_1)ja-ma is chosen to provide correct rotational proper-
ties.37 TFor a particle in a state denoted by the number 2 outside a shell
filled but for a hole in a state denoted by 1, we have
|31 30 ) =§- -1 ™ (jy -my jom, |J'1J'zJM)Tth|C)-
If a closed shell contains a state Ia), then, employing Eqs. (B.2) and
(B.1B), we obtain
niley = 1 mafnaley = -nf nl maloy = iloy.
Thus T5|Cy = 0, if |a)e|C). (B.34)

We similarly find, for |a)e|C) and |b)g¢|C) that

Ny MalCd = 0, (8.3B)
w1l = o, (B.3C)
T jC) = 0. (B.3D)
The two-body operator V = % i3 Vij is given in the occupation number

representation by35
-‘-
V= a% my M5 N e (ablvy;]cd)
where, omitting isotopic spin,
(ablv, fed) = g (Jamadbmp | Ja i)
% (emeiamaliciad ™M) (GaipM|vi,|iciad ™'
Since the potentials we use are all scalar in J-space, we have J = J'.
In this paper we are interested only in the interaction between the

oo A oA

particie and hole states, so omitting isctopic spin considerations,; we
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have the matrix element of vy, is

- . — jg +jq '=my -m . . .
(GriaM|vyp |3 352D = 2. .('1)J1 T (G my g | 3y 2 M)

oy
(B.4)
(a'=my 53 "me 'y "a "BOCC| N T vip T Y|
where
ol T vis Wormeley = % Lo el n 1d e W o
(B.5)

x {ab|vyz|cd)
with a,b,c,d being summed over 1, 1', 2, 2'. Using Eqs. (B.1l) and (B.2)
we find

Mg Te ﬂ:' T 'le Ma Me n;' ' nI o

(B.6)

8(1,10M Me Te "My |Cd-Ma e &' Ty M ' M|c).
Use of Eq. (B.3) leads to the result that
5(1,10Mg e T8 ' M|C) = 6,162 ",e)Ng Ty |C)-8(2",d)Mc Ty |
+ 0 Mg Me My (o)
is zero for all values of ¢ and d.
In a like manner we obtain
T Me W W Mo = 8¢e,2008,1)-n] Nany ' Ty |
- 18,27 =Ty ' Mal[6(c,1)-HMcIM, mlc),
or
aMle T M Tt Myld = [8(c,2)8d,1)-6(d,2)8 (e, 1)y "My [C) .
Thus it follows from Eq. (B.6)
M Me W' M rley = [6¢c,1)8(d,2")-6(c,2")8(d, 1)1, " Ty |c).
Similarly, one finds
Clm m nl My = -(sa,180,2)-8(a,2)8 B, 1 Ic|n o,

so that
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|t M Th T Mg Me W Tt led= -[6Ga,1")6(b,2)6(c,108(d,2")
+6(a,2)8(b,1')8(c,2"')6(d,1) - 8(a,1')6(b,2)8(c,2"')6(d,1)

- 6(a,2)8(b,1")6(c,1)6(d,2")].

Inserting this expression into Eq. (B.5) and using vgy = V35 we find
(cl'\'}l T vie W' T ' |e) = [ 2|vya |12y (1'2]vyg|271)]

- - Z (Ja 'my 'jz“bhl '523'M") Gamy Jo 'me | 31 da 'I'NM")

+J2 'J
x [<5n 3o 3 vy | 32 d "IN - (1)’ (3 "32IM'| vz )iz '3, M ],

Substitution of this expression into Eq. (B.4) and manipulation of the

coupling coefficients according to the formulas in Appendix A yields

Rtatlns (7520 = - T @ +1>{h Jo J}

W' ' J

. 1 . . jy g 'R 4L 4, s 1
x [{51 "33 |ng | dade 'IM") - (-1) 72 (3 "3 "™ " |vyp i 5T M) ].

Inclusion of the isotopic spin quantum number leads, by the same pro-

cedure, to the result that the hole-particle matrix element is

(Fa 3o IM T Ty s ! ) = - Z (23'+1) 2T'+1)
31 Je MMMy |via |51 'de JTMT L2 3.6)

i Ja J ¥¥T

X x [{31 '3z MJ') My |V12|J1J2 J MJ's%%T MTv>
2 ] s 0 }},Tl
ji J2 J 3 3

Jy i 'HIHTHL
- (-1)J1 T2 (i1 'da I My 5T My |vap | da '310 M ;55T My ) .




APPENDIX C
MOSHINSKY TRANSFORMATION BRACKETS

The transformation from wave functions with coordinates r;, r; to wave
functions with center-of-mass coordinates R = %(r, + rz) and relative coor-
dinates r = r, - rp was first treated in detail by Moshinsky.38 He defined
the transformation bracket <nw;n£44n1z1,nzz%L> such that

[0y £y ,00 45 , IM) =%Z§': |nL,‘7\f,1M)(n£,,‘Y\£,L| ny 4y 50 4, L)

where n{ and "{ are the quantum numbers associated with the relative and

center-of-mass coordinates respectively. The wave function in relative

coordinates contains a harmonic oscillator length b' = J2 b, and associated
with the center-of-mass coordinate is b'' = 7%9 . This appendix is devoted

to the two-step evaluation of these transformation brackets; first, we
evaluate (nﬂ,ﬂf,LlOﬂl,Ozzlb , and then a recurrence relation for n;,n,>0

is derived.
Evaluation of (nl{n£,L|0£1,0L2,L)

From Eqs. (I.12) and (I.13) we find that the two particle harmonic

oscillator wave function is

%
2y 2 3 (2l t3 P 4
|02, ,08 ,1M) = e | £, 4 1M) (c.1)
T (4 )T (U +3)

where
|22, 1M) = )N (Bymy Loty | £ o T 1, 21 ¥™ (0, , 9 )5, 2 Y™ (65:002) -
my My £ L2 9
Employing a formula for the translation of multiple fields which states38

that if
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then
4
rzY‘E(e,LQ) = E 6(2'+ﬂ",,€,)G(f;'£"£) Z (lelzllmn"alznzm) .
zl l'ell . mlmll
x rvzlY[E: (9’ 'fel)r”‘e’”Y(E::(e”s@')
where
" 4m(24+1) ! X
G(L'e"e) = (-1)% (€.2)
24'+1) 1 24"+1) !
and a formula for the product of two spherical harmonics which states34
Yz:(e ,'Q')YE::(B- ;Ipl) = %H(J&'E"f;) (L'm'z"m"u'L"Lm)Y‘E(e,q})
where
(24'+1) (24"+1) )y
H(L'L"L) = (£'04"0]£'4"20), (€.3)
4 (24+1)
we find
|leam)=% (lamy Lo mg | £, 43 1) 2:f| ;L_M: S YORT N

f/"i" m"M"
X 6(2"+-i",£2)G(£'i'£1)G(JZ«".("I,Q)(Bir)Z'+Z"Ri'+£"
< (E'm'i'M' |£,'i'£,1m1 ) (f/"m"i"?ﬂwz”&"zgﬂb)
x )0 H('2"00) ('m'a"m"| 410", ;Y0 (8, 4)

4omg
x E H(i "t"£o) (t'W’t"’ﬂ'lf'i”‘fo'"b)%((a,é) .
Lomo ‘ %o

By use of Eqs. (A.l) and (A.9) the vector coupling coefficients can be

combined to yield , )

2,

le, aLm) =7 3 0 ¢} (%)
"ofo ‘Q'i{jn
.Q" "

x (5 ()// f’l—og_) ‘H(l‘jﬂ‘?o) H(,f' f“fo) [_(I‘po‘“)(lio*'xl 'P|+')(1 Ql*lﬂyl

Y X 7 »
« pRAR- o Ri + - % , 3 o
r 2 M4 fom).

2, L2y, L

S(R4 1, R,) 82" £7, 2) G(2'4'9)



64

If the H-function is to be nonzero, then £' + 4" + £, and

fl " . 1 L’;(.R'*)”“po)
e fo must be positive even integers, thus, expanding (—b-,-,.)
( Rl )i(f'\' £ fo)
and \ T

A into a series of Laguerre polynomials by the

formula39

. k! U+ o+ k)
K m . oA
X :,,\Z.; G0 Tk=m] Nt+a+m) L ),
we find that \0&,,0% ,Lm) 1is related to\molo)’hof\,’LVO by

, 2 mor Mg, EIRR)
o8 08, Lny = Y L e e (i s(2'+ 2 0)5(25%) 0)

Mmofp 3787
rhbio x"g

X G(R2"2) GIR"E" ) H(L'2"2,) H(L £ L)
X [1Ceremeo]l Ls £+ 4" ¢4,)]!
La(ot2"-p5)-mo]! Li(f42"-4o)- ]!

X (L oo+ )2 Zorv )2 £y 1)(20,41)
mol Nol (2, +3Y M (2t K) M mer Lot 35) M Mo+ Lo+ 34)

22" 8o
X P[‘U«O'*}”‘ ,gu*'})] P[i(i’d"*fo“)] & £, ‘molo,‘hafo ; L ,v\).
’ol ‘?1

r

Therefore the transformation bracket satisfies the relation

' V.
<”“Q)%R’)L’0—9,,O.OA,L7 - (1)‘3(1’.+'91 (’)J-H)\lj'-n)(1_,?‘+,)(1‘pl*l) -]1
IN! ML) P8, 1) M ens £ R)0M 2434

24meN
X ;;, {-1) 5(,?'*{',,?,)8(4?"41"’1)&) G‘(ﬁ’i'ﬁ,)(](-«?li}al’ﬂl) (C.L[)
TalF

«Hlrgrgn(pgng) La et La(retonlt
Lil2vg"-2)-m) [{ 1274 27-2)-n]!



[ 2 2" 2

X P{Aa2maa3)| r[a2 s 224 CAE M 4
o (s w)J “#3] i?. 4 L),

This expression will be zero unless

+"-R-1m 2 0
and

'+ -Ld-1nmz2o

Adding these and using
‘ "
L= 0+ | 9 x 2"+d
we find
R+ 2y --2am-F -2 2 O.
But from the conservation of energy this must be exactly zero, and hence
we must have
- )'4/?"—,9-2/“:0
'+ 2"-€ -1n = o,
This second expression may be derived from the first along with the §-
functions in Eq. (C.4). Thus,conservation of energy is ensured by the
inclusion. of S(Jl‘-»,?") £+421m) in the summation in Eq . (C.4).
By using Eqs. (C.2), (C.3), (A.2), (A.10), and (A.4) we may reduce

the expression for the transformation bracket to
Con®,NE L ol,00 LY

(19-*')(111-?')(1-9“)(1 1+41)
mINt C(2+3%) Plae k) Min+2r 35) P 24 3)

1‘9,1»!1

X 2 : L MR AL k) (2 -2 -27)
2%, 252
27 44

x §(2'= f', ﬂ.)&(_o"-oi';.el)g(_pl,,_‘pu, Am+d) P[&L}%Q"*-Q*E.))X
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(1«?.*\-#)! (2 p;‘“)‘.(«?'f-ﬁ)*.@)! (74 'f'f”)l
(A 4L s 20) 1 (25 L4 20

x T[4 (248" 1+3)] [

(g(2/+2ms ) L (' +2£"+2)]!
Lg(emeR-2]l L3R« 2-2) ] L4 (2= £ -2 DE(27 +2 -2")]!

X (272" 4x+2+) (27 + 2" x-£) (R 42" 2-x)' L' +2 =)
(187422 0! D s =022 (R4 F'=x)| (27 43+ %)l [ 2+240)]

x

(R4 2+ eaxed (25 ag-x) (242 +x-2)! (R+4"-0")) 1
(b2 122+ (243 -2/ =2)] (R4 Qe =)l (2'+£"0x) (242" )]

Wl‘fi’u@l

L .

Defining q by
- "o /
g = A+ R0

and summing over 1”'—{') ¢£'!, we obtain

m+*+£~L"".{,(«Q+‘b‘9|l
<'“‘eyqn£s'-'°‘p~1°‘ox sL7 = 2 &) (1x+1) Mln+ts3) MO+ 24 3)
'X,%

) Y
‘ (es)2f+r(ae+)(20%0) "”*‘”]
_ltm.+£1)m!m! Me+3) M+ R) MIm+L+R)OIN+ £+2%)

. Y
(124! Qo) (Faa-,)) (g 4 £~} (& +x+ L) uﬁ%i).'] :
L (2m +2 84! (24224 2@ 4 (v +2-0)! {g-x) (g+w=1)!
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X [(‘Df*f‘X)! (I+%’—‘pl).‘ (J|*I*X*')! (J"'J ‘x)! (J|" "‘?)-‘ (!"’%‘—Pu)!\lﬁ
(X4 12+ (L2 40H -2, 420 (L a22m4)! (g -x)! (g ax+1)! J

(e 2) (ma g ) » Ade by
Ll (2+g -2l Di(o+p -l [$(Lrg-2)]I [L(£ 40 -g)]l =™ -

Finally, using

f‘&mfuﬂ{]‘-‘- LI Jr

IM‘" .)

we find the transformation bracket is glven by

{ml e Llop 00 ,L> (c:5)

!

= (,,)"‘*"'*”1“- [ 2! A1 QRQ2Py) (m+R)(N+P)I &
e an)! 2™ miniaane Gnadal

X QL £ x

xZ (1%+1) n(ﬁ'i};«?li’;w) {—(’ k¢ L}

where

A
+ ! ' p- ! [} - .‘
A(J.,Q;le 2ix) = [(,?.42451 DY (4 2-%)! (2,4 %x-2) o)
(24 v -2, )}

X I} r+L4xr)ill, 42-x) e, +x-2)! ]Z 1(4*% -4,) i
(%= 2)! 15 (g-3)! (gox !

X (£ g -0 ) . (£+%-4)
[{(‘9.‘5’_‘0.)]![3{ (340,—$):“ L"(i*%’ )1)]‘[1'(14 £, - 3)],
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Since

L]

[1}

A+g -8 = 2" -p'R

and

f44-0,= £"-£'+1

must be even integers, q is restricted to values for which the arguments
of the factorials in Eq. (C.6) are integral. In order to have nonzero
values of the 6-j symbols, the summation over X is limited to values

such that
|,2‘-ﬁ.|£ YL P+,

and ]f -.("Llé"y ¢ At

DY

Recurrence Relation for Transformation Brackets
Consider the wave function

|
l("\.-ﬂ)'?., my Ly 4 LMY “Z (‘91’"‘- 'Ql"“xl‘?lylL”) no

oy gy
X Riaan, 1) Y (6,,%,) Rmﬂl(n‘) Y::L(@l'%)

where

! 2
1(|_)).5?+3m! A - r‘: o .
" e o5 22y

RaalP = | P(makeyg) | < ~ :
The Laguerre polynomials satisfy the relation3?
- 1) ¢ [}
24 o (ame A 3 -x 2+% (m+ R+4%) 044
Lm+| () = M) L m )= Mt Lm-| (x*),
Hence we find
\
j 1243 | 4 kS
Pt 1(3ﬁ (m+11 Y T 1b*
= X
R(m-n),? ( -Ei) r c

P(m+—?1’ 5/1)
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. [l1m+x+3a-%:) L,e-'i % - lm++]) Lit,t(‘:—\i\]

ma\ m m

and it follows that
rx
(1”\. + 0+ 1 o~
-7 lml‘p' 3 my Ry, Lmy
A
le.-u)(m,-&.ﬂ,-o 3/1)]

l (M|+|)i?| ) "\1‘?1 :’LM> =

4

- |m, (m,+2,+%)
' : '(m|‘|)-o|’”\l-?1‘l.~\>.

(m, 4 ) 224 1)

Thus we obtain the relation

CmRyNE imlmen) 0, my LMy

(c.n)
=z 1«.449.4»%:
[(”‘--H)(m,..,,e,.,%ﬂ (”\J, "hf, LM‘”‘- Ly g My R, y LMY
- | mi{m,+L,4 %) :
[lmn""n"\\-&-o.-ﬁ %)] ("\J,chf,l_ml \"‘u"h?., My ‘Ql’ LM)

- 1
["h.*')(m,*-—?,

rl
-;;ﬁ)]lﬁ (m-&,’nf,l-"l‘ _;;—flm\jlsmxfx ) Lmy.

From conservation of energy considerations we note that if the left-hand
side of Eq. (C.7) is to be nonzero, the first two terms on the right-
hand side must be zero. Accordingly, we obtain the recurrence relation

e m,o,"hf’ L] (m1) 2, yma 2y, LY = Lim+)im, 4+ ).+3/1)T6.

. e ‘o i p ! (C.b’)
x 2:_;; 4’“‘91%111-"""? \m Ky, emy

n g

x L' n Ly maa L
Y 4 \ (3 | 2 P Y 7

The nonzero values of the matrix element in this equation are given in
Table VII.

If we wish to evaluate (m.Q,'hi, L |’Y\|-9.,("‘1"”‘°1,L7’ we need only

-4 -4

change the [("‘n')(mm—?,ﬂ/l)] in Eq. (C.8) to [_('M*')("\L*«lu”/z)] 1

and change the sign of the last four lines in Table VIII, since the sign

13
'-‘
=]
v—:

NN
'-‘
9]
O

o

avl
[@]
7]
i
ct
0
T
o
o]
ot
k-‘
2
&

of the r-
L a¥
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TABLE VII

a
Nonzero components of <""j,hf,Lml‘%|m"l','i\‘f'|LM)

m' 5 o 7’ 3 (’ml,‘nf,u.ml-%\m"!’,%'f', LMy
Y
m-1 2 N 1 Ji [m(m-ta?-i"/l)]
N1
m X n-1 v g 1 IMmin+2+5)]

L1 2

m=-1 | 2+1 | N1 | £ [~\°nu+~nw)]"w“ﬂ

212+

met | 2es |0 [ 21 | DTm2 tmegagyae]* wiy

. AL 1 -
m o | a1 [ [ 2 | D2 (ma2e 52 40] Wy,

2L1 2!

molaa | 2o | Ladtmenegymetan]® Waza

3The quantum numbers are subject to the condition

Lt 2+ 2NaPrama 22N+ 242




APPENDIX D
CENTER-OF -MASS MOTION OF NUCLEONS

When working with nucleons in a harmonic-oscillator-potential well,
one must remember that the center of mass is also in motion governed by
the harmonic-oscillator potential. If all nucleons occupy the lowest
possible oscillator levels according to the Pauli principle, the center-
of-mass motion can be ignored; only if some nucleons are excited
to higher oscillator levels must the center of mass motion be carefully
taken into account. In particular, certain excited states, called
spurious states, have the same intrinsic wave functions as the ground
state, but the center of mass is not in the lowest oscillator level.

As shown by Elliott and Skyrme,16 the spurious states can be eliminated
by diagonalizing the matrix of the operator

S
R = 'A‘:[Zrc *123‘9]
v i<

and retaining only those combinations of states with the minimum eigen-
value. This is equivalent to evaluating the energy of the mass center
and rejecting those states which do not have energy'%ﬁmh corresponding
to the Os state.

For the hole-particle configuration we find from Eq. (2.2) that

CHLTMTMe | R¥LIV I TMy T

Wb T e Ry
T Z: e {5 5 3] Ted e R iy -
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where

25(r,0) €’ gy 7@’ | R iy I, 3'M7>)

kS A ! Y
R*= &{r'+rsan-n)
Using Eq. (A.18) we may expand the above expression to the form

<CTL LTMmsTre R T 3 TMyTMe Y
_ | ' -jl JJ. J - :):""Jl*jl J., J" j;
—-rrgmﬂ) e 3 {LH) ¥ovien {T, . o)
x Gy 8(3,2) N e J{?T{ 7 J, <J1"r J9 >8¢1,1)

, S S GOV R N & : . . )
Ty ii; - } SHES FRISN NN FaY

147!

J)_“'-,
+ (- 2§17, o) [(-:)

TJ;
J 0

s

. ., J/4d,+ 3 J:. T’ J.
&5/ ey i st a e 1T+ {7, i }(J;lhl JsU)

: J',_-LJ';-OT/ A
+ (=) { } <y

AOTSN I ﬂ}

The first two terms in the exchange part of this formula will always be
zero since we will never have the particle and hole in the same state.
Employing Eqs. (A.3), (A.5), (A.6), (A.7), and (A.13), we can

reduce the previous expression to
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T TMTM R T 02 TMy THy

of=

= =& L i) T GR35 G005, + i, i) e i

XS(..]z,jl,)é(lﬂ') + (_I)JH'J:.-PJ'-Hl {J'u Ja

I M4 . . <y
i 1}0- (A FRZEN FAIN
- 4 N .y .y .

38008, CVIn iy G b >]'

Utilization of Eqs. (A.18A), (A.11), and (A.3) leads to the relations

1j+171% ..
capi| e 4o = (35| cnal Pfeesd,insie )
and

N4

Cagifnfe iy

ST [(lJ'H)(nJ"H)]K{f, i, ;l} Cm 2| gl m* 2y,

and thus the evaluation of the matrix of R2 may be completed by use
of Eqs. (A.15E) and (A.15F).

In the case of 016 and N16 we find in every case except the J = 1,
T = 0 state that for all linear combinations of the simple harmonic-
oscillator wave functions, the center-of-mass energy is a minimum and
thus need not be considered in choosing our basis vectors. In the
J=1, T = 0 state, however, (RZ) is not diagonal and we find that

a certain linear combination of the harmonic-oscillator wave functions

refer to a state in which the center-of-mass motion is in an excited state.

If we let
[y = IO‘P": iy, 1nj007 , ¥y = 'D—P'/x odsy, Lmjo 07,
| Wy = | 5Py, 15y 1Mj00y , WY =]0Ry, ody, 1Mj007,

I?s) = \ 093/106‘5/11”3007 3
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then the RZ matrix element in this representation is

(<) RY ¥;Y)

3.2 _s 22 2 _2
-_i-\.c—’ 4 - Tq 9 3
s _3, 1o PRYT) A5 /3
9 179 9 9 3
- _1J3' 2 Jio 3 Y W 13
9 4 It 9 q 3
2 /5 /2 3.2 2
-9 g 3 -3 3 3
_ 2 /5 LAY ol 3
3 3 3 3 T v2

This matrix has eigenvalues -3, -1,

PW

» -3, and_g_.

The eigenstate corresponding to this last eigenvalue,

/T Jio. ' V2
“ﬁ>‘ Sy 6'*9+'Thh7*"_+V7+ 1|%
must be removed from our shell model calculations.

The admissible state vectors corresponding to the -}i eigenvalues

are
I\re7: J{%l“rl)+ %Iql\i‘ ﬁ?l VA %l%ﬁ* ’\(,%'I‘VS\)S
ey = Blwar Flwy

|‘-I’D7‘ | Wl\7+ lq’ﬂ7‘ ﬁgl “’57

‘“hs?: J—i'l Yy~ \E;I\Vﬁ“'ir%lws) .
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